Skeletal Muscle Ventricles, Left Ventricular Apex-to-Aorta Configuration

Author:

Greer Kevin A.1,Lu Huiping1,Spanta Ali D.1,Hammond Robert L.1,Stephenson Larry W.1

Affiliation:

1. the Division of Cardiothoracic Surgery, Wayne State University School of Medicine, Detroit, Mich.

Abstract

Background Skeletal muscle ventricles (SMVs) have been used in animals in a variety of configurations to provide circulatory assistance. Long-term survival and function have been demonstrated. Our laboratory recently obtained promising short-term hemodynamic data in a left ventricular apex-to-aorta model. Methods and Results SMVs were constructed from the left latissimus dorsi muscle in five adult mongrel dogs. After a 3-week period of vascular delay and 5 to 7 weeks of electrical conditioning, valved conduits were used to connect the left ventricular apex to the SMV and the SMV to the descending aorta. The SMV was then stimulated to contract during cardiac diastole. Initial measurements showed a significant increase in the mean femoral diastolic pressure (62±6 versus 51±5 mm Hg, P <.05). There was also a decrease in the left ventricular tension-time index (11.5±2.5 versus 14.6±2.1 mm Hg·s, P <.05), indicating a decrease in the work requirement of the left ventricle. During SMV stimulation, the majority of flow (65%) was through the SMV circuit and was associated with reversal of flow in the proximal descending thoracic aorta. The longest-surviving animal survived 76 days, at which time pressure augmentation was still seen (mean femoral diastolic pressure, 63±0.9 versus 50±1.2 mm Hg, P <.05). Conclusions Survival beyond the acute setting is possible with this model. Diastolic pressure augmentation can be effectively maintained over time.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3