Age-related changes in beta-adrenergic neuroeffector systems in the human heart.

Author:

White M1,Roden R1,Minobe W1,Khan M F1,Larrabee P1,Wollmering M1,Port J D1,Anderson F1,Campbell D1,Feldman A M1

Affiliation:

1. Division of Cardiology, University of Utah Medical Center, Salt Lake City.

Abstract

BACKGROUND Aging decreases cardiac beta-adrenergic responsiveness in model systems and in humans in vivo. The purpose of this study was to comprehensively evaluate the age-related changes in the beta-receptor-G protein-adenylyl cyclase complex in nonfailing human hearts. METHODS AND RESULTS Twenty-six nonfailing explanted human hearts aged 1 to 71 years were obtained from organ donors and subjected to pharmacological investigation of beta-adrenergic neuroeffector systems. When the population was subdivided into the 13 youngest and 13 oldest subjects, total beta-receptor density assessed by maximum [125I]ICYP binding (beta max) was reduced in older hearts by 37% in left ventricles and 31% in right ventricles (both P < .05), and the downregulation was confined to the beta 1 subtype (r = .78 left ventricle beta 1 density versus donor age). Older donor hearts exhibited a 3- to 4-fold rightward shift of ICYP-isoproterenol (ISO) competition curves and demonstrated 43% fewer receptors in a high-affinity agonist binding state (P < .05). Older hearts exhibited decreased adenylyl cyclase stimulation by ISO, by zinterol (beta 2-agonist), and by the G protein-sensitive probes forskolin, Gpp(NH)p, and NaF. In contrast, there was no change in response to manganese, a specific activator of the adenylyl cyclase catalytic subunit. Toxin-catalyzed ADP ribosylation in membranes prepared from older versus younger hearts revealed a 29% to 30% reduction (P < .05) with cholera toxin (Gs) but no difference with pertussis toxin (Gi). The systolic contractile response of isolated right ventricular trabeculae to ISO was decreased by 46%, with a 10-fold increase in ISO EC50 in older relative to younger donor hearts. CONCLUSIONS There is a profound decrease in cardiac beta-adrenergic responsiveness with aging. This occurs by multiple mechanisms including downregulation and decreased agonist binding of beta 1-receptors, uncoupling of beta 2-receptors, and abnormal G protein-mediated signal transduction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference98 articles.

1. Reduced β-adrenoceptor sensitivity in the elderly

2. White M Holliwell D Leenen FHH. Cardiac /-receptors and baroreflex responses with aging. JAm Coll Cardiol. 1991;17:294A. Abstract.

3. Contractile and biochemical correlates of beta-adrenergic stimulation of the aged heart;Guarnieri T;Am J Physiol.,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3