Affiliation:
1. From the Bioengineering Graduate Group, University of California, Berkeley and San Francisco (W.S.E., D.M.A., M.D.L.); the Mechanical Engineering Department (D.M.A.), University of California, Berkeley; and the Cardiovascular Research Institute (M.D.L.), University of California, San Francisco.
Abstract
Background
The relation between heterogeneously coupled myocardium and fractionated electrograms is incompletely understood. The purpose of this study was to use a detailed computer model of nonuniformly anisotropic myocardium to test the hypothesis that spatial variation of morphology of electrograms recorded simultaneously from multiple sites increases with increasing heterogeneity of intercellular coupling.
Methods and Results
A sheet of elements with Beeler-Reuter ionic kinetics was coupled with cytoplasmic resistivity to model cells. Gap junctional resistance values were assigned by recursive randomization to produce a fractal pattern of heterogeneous coupling, simulating damage resulting from infarction. The correlation dimension of the pattern, D, measured heterogeneity of intercellular coupling. The peak-to-peak amplitude, duration, minimum derivative (steepest downslope), number of inflections, frequency of peak power, and bandwidth of unfiltered unipolar electrograms were calculated. Linear regressions indicate (
P
<.001) that the coefficient of variation of five electrogram metrics increases with increasing substrate heterogeneity and that the distance over which electrogram morphology decorrelates decreases with increasing heterogeneity of intercellular coupling.
Conclusions
These findings confirm our hypothesis that the spatial variation of morphology of electrograms recorded simultaneously from multiple sites increases with increasing heterogeneity of intercellular coupling.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献