Nonreentrant Mechanisms Underlying Spontaneous Ventricular Arrhythmias in a Model of Nonischemic Heart Failure in Rabbits

Author:

Pogwizd Steven M.1

Affiliation:

1. From the Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Mo.

Abstract

Background The goal of this study was to define the mechanisms of spontaneously occurring ventricular arrhythmias in the setting of nonischemic heart failure. Methods and Results Three-dimensional cardiac mapping from 232 intramural sites was performed in four rabbits with heart failure induced by combined aortic regurgitation and aortic stenosis and in four control rabbits. During the development of heart failure, serial echocardiographic examination demonstrated a progressive increase in left ventricular (LV) chamber dimensions and a decrease in LV systolic function over 19±2 months. Serial Holter monitoring demonstrated spontaneously occurring premature ventricular complexes (PVCs) (up to 13 000 per day) and couplets in all four rabbits with heart failure, and runs of nonsustained ventricular tachycardia (VT) up to 26 beats long in three. Mapping of spontaneous rhythm was performed for up to 60 minutes. None of the control rabbits demonstrated spontaneous arrhythmias during mapping. Three rabbits with heart failure demonstrated isolated PVCs, and two demonstrated couplets and runs of nonsustained VT up to 4 beats long. The three-dimensional activation sequence of 50 sinus beats (42 from rabbits with heart failure; 8 from control rabbits), 19 PVCs, and 37 beats of couplets and nonsustained VT was determined and the mechanism of arrhythmia defined for all ventricular ectopic beats analyzed. Normal sinus beats from the failing rabbits activated rapidly, with a total activation time of 28±1 ms ( P =.18 versus sinus beats from control hearts, 26±1 ms). Sinus beats preceding PVCs in the rabbits with heart failure activated in a similar fashion, with a total activation time of 26±1 ms. In each case, these PVCs initiated in the subendocardium by a nonreentrant mechanism based on the absence of intervening electrical activity between the termination of the preceding beat and the initiation of the next (225±7 ms), despite the presence of multiple intervening electrode recording sites. Couplets and monomorphic and polymorphic VTs were due to repetitive nonreentrant activation at the same or different subendocardial sites. Total activation time of beats of VT averaged 44±1 ms and did not differ from that of isolated PVCs (43±2 ms, P =.65). Pathological analysis of tissue demonstrated myocardial fiber hypertrophy, degenerative changes, and interstitial fibrosis throughout the failing hearts. Conclusions Spontaneously occurring PVCs, couplets, and VT in a model of nonischemic heart failure are due to nonreentrant mechanisms such as triggered activity or abnormal automaticity. Approaches to the treatment of spontaneously occurring ventricular arrhythmias in patients with nonischemic heart failure should be directed at nonreentrant mechanisms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3