Differential Effects of a Segment of Slow Conduction on Reentrant Ventricular Tachycardia in the Rabbit Heart

Author:

Haberl Kai1,Allessie Maurits1

Affiliation:

1. From the Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Netherlands.

Abstract

Background —The purpose of this study was to compare differential effects of a segment of slow conduction during ventricular tachycardia (VT) due to depression of the action potential and electrical uncoupling. Methods and Results —In 33 Langendorff-perfused rabbit hearts, a ring of anisotropic left ventricular subepicardium was created by a cryoprocedure. Reentrant VT was produced by incremental pacing. Slow conduction in a segment of the ring was created by selective perfusion of the LAD with 10 mmol/L potassium or 0.75 mmol/L heptanol. As a result, VT cycle length increased from 193±34 to 235±37 ms (potassium) and 227±42 ms (heptanol). Reset curves were made by applying premature stimuli proximal to the area of depressed conduction. In a ring of uniform anisotropic tissue, the reset curve was almost completely flat. Electrical uncoupling of part of the ring (nonuniform anisotropy) resulted in a mixed reset curve. In both substrates, early premature beats failed to terminate VT. Depression of part of the ring by increasing K + resulted in a completely sloped reset curve, indicating a gap of partial excitability. Under these conditions, in 19 of 24 hearts, premature beats terminated VT by conduction block in the high K + area. Conclusions —The nature of the area of slow conduction determines the type of reset response and the ability to terminate VT.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3