Affiliation:
1. the Bioengineering Laboratory, Department of Chemical Engineering, The State University of New York at Buffalo.
Abstract
Background
We developed a computer model to predict lysis rates of thrombi for intravenous thrombolytic regimens based on the convective/diffusive penetration of reacting and adsorbing fibrinolytic species from the circulation into the proximal face of a dissolving clot.
Methods and Results
Solution of a one-compartment plasma model provided the dynamic concentrations of fibrinolytic species that served as inlet conditions for simulation of the one-dimensional spatiodynamics within a dissolving fibrin clot of defined composition. The model predicted the circulating levels of tissue plasminogen activator (TPA) and plasminogen levels found in clinical trials for various intravenous therapies. To test the model predictions under in vitro conditions, plasma clots were perfused with TPA (0.1 μmol/L) and plasminogen (1.0 μmol/L) delivered at constant permeation velocity of 0.1 or 0.2 mm/min. The model provided an accurate prediction of the measured lysis front movement. For TPA administration regimens used clinically, simulations predicted clot dissolution rates that were consistent with observed reperfusion times. For unidirectional permeation, the continual accumulation of adsorbing species at the moving lysis front due to prior rounds of solubilization and rebinding was predicted to provide for a marked concentration of TPA and plasmin and the eventual depletion of antiplasmin and macroglobulin in an advancing (≈0.25 mm thick) lysis zone.
Conclusions
Pressure-driven permeation greatly enhances and is a primary determinant of the overall rate of clot lysis and creates a complex local reaction environment at the plasma/clot interface. With simulation of reaction and transport, it becomes possible to quantitatively link the administration regimen, plasminogena activator properties, and thrombolytic outcome.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献