Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans

Author:

Konings Karen T.S.1,Smeets Joep L.R.M.1,Penn Olaf C.1,Wellens Hein J.J.1,Allessie Maurits A.1

Affiliation:

1. the Department of Physiology, Cardiology and Cardiopulmonary Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.

Abstract

Background During atrial fibrillation (AF), the atrium is activated by multiple wavelets that continuously change in size and direction. The aim of this study was to correlate the temporal variation in AF electrogram configuration with the varying spatial patterns of activation. Methods and Results In a group of 25 Wolff-Parkinson-White patients undergoing cardiac surgery, the free wall of the right atrium was mapped (244 points) during electrically induced AF. The unipolar electrograms recorded during 4 seconds of AF were classified into four categories: (1) single deflections, (2) short-double potentials, (3) long-double potentials, and (4) fragmented potentials. The proportion of these four types of electrograms during AF was as follows: singles, 77±12%; short-doubles, 7±3%; long-doubles, 10±7%; and fragmented, 6±4%. Electrogram morphology was an indicator for rapid uniform conduction (single potentials; positive predictive value [PPV] of 0.96), collision (short-double potentials; PPV of 0.33), conduction block (long-double potentials; PPV of 0.84), and pivoting points or slow conduction (fragmented potentials; PPV of 0.87). In type I, II, and III AF, the proportion of long-double potentials was 4±2%, 12±3%, and 18±7% ( P <.05); the proportion of fragmented complexes was 2±2%, 6±3%, and 10±4% ( P <.05), respectively. During electrically induced and self-terminating episodes of AF, no preferential anatomic sites for double or fragmented potentials were found in the right atrium. Conclusions The morphology of single unipolar electrograms during AF reflects the occurrence of various specific patterns of conduction. This might be used to differentiate between different types of AF and to identify regions with structural conduction disturbances involved in perpetuation of chronic AF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 325 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3