Cellular Pathology of Atherosclerosis

Author:

Rainger G. Ed1,Nash Gerard B.1

Affiliation:

1. From the Department of Physiology, The Medical School, The University of Birmingham, UK.

Abstract

Abstract— During the development of an atherosclerotic plaque, mononuclear leukocytes infiltrate the artery wall through vascular endothelial cells (ECs). At the same time, arterial smooth muscle cells (SMCs) change from the physiological contractile phenotype to the secretory phenotype and migrate into the plaque. We investigated whether secretory SMCs released cytokines that stimulated ECs in a manner leading to increased leukocyte recruitment and thus might accelerate atheroma formation. SMCs and ECs were established in coculture on the opposite sides of a porous membrane, and the cocultured cells were incorporated into a flow-based assay for studying leukocyte adhesion. We found that coculture primed ECs so that their response to the inflammatory cytokine tumor necrosis factor-α was amplified. ECs cocultured with SMCs supported greatly increased adhesion of flowing leukocytes and were sensitized to respond to tumor necrosis factor-α at concentrations 10 000 times lower than ECs cultured alone. In addition, coculture altered the endothelial selectin adhesion molecules used for leukocyte capture. EC priming was attributable to the cytokine transforming growth factor-β 1 , which was proteolytically activated to a biologically active form by the serine protease plasmin. These results suggest a new role for secretory SMCs in the development of atheromatous plaque. We propose that paracrine interaction between ECs and SMCs has the potential to amplify leukocyte recruitment to sites of atheroma and exacerbate the inflammatory processes believed to be at the heart of disease progression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3