Smooth Muscle α-Actin CArG Elements Coordinate Formation of a Smooth Muscle Cell–Selective, Serum Response Factor–Containing Activation Complex

Author:

Mack Christopher P.1,Thompson Maria M.1,Lawrenz-Smith Susan1,Owens Gary K.1

Affiliation:

1. From the Department of Molecular Physiology and Biological Physics, University of Virginia Medical School, Charlottesville.

Abstract

Abstract —Previous studies have shown that multiple serum response factor (SRF)-binding CArG elements were required for smooth muscle cell (SMC)-specific regulation of smooth muscle (SM) α-actin expression. However, a critical question remains as to the mechanisms whereby a ubiquitously expressed transcription factor such as SRF might contribute to SMC-specific expression. The goal of the present study was to investigate the hypothesis that SMC-selective expression of SM α-actin is due at least in part to (1) unique CArG flanking sequences that distinguish the SM α-actin CArGs from other ubiquitously expressed CArG-dependent genes such as c- fos , (2) cooperative interactions between CArG elements, and (3) SRF-dependent binding of SMC-selective proteins to the CArG-containing regions of the promoter. Results demonstrated that specific sequences flanking CArG B were important for promoter activity in SMCs but not in bovine aortic endothelial cells. We also provided evidence indicating that the structural orientation between CArGs A and B was an important determinant of promoter function. Electrophoretic mobility shift assays and methylation interference footprinting demonstrated that a unique SRF-containing complex formed that was selective for SMCs and, furthermore, that this complex was probably stabilized by protein-protein interactions and not by specific interactions with CArG flanking sequences. Taken together, the results of these studies provide evidence that SM α-actin expression in SMCs is complex and may involve the formation of a unique multiprotein initiation complex that is coordinated by SRF complexes bound to multiple CArG elements.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3