A Comparison of Aorta and Vena Cava Medial Message Expression by cDNA Array Analysis Identifies a Set of 68 Consistently Differentially Expressed Genes, All in Aortic Media

Author:

Adams Lawrence D.1,Geary Randolph L.1,McManus Bruce1,Schwartz Stephen M.1

Affiliation:

1. From the Department of Pathology (L.D.A., S.M.S.), University of Washington, Seattle, Wash; Department of Surgery (R.L.G.), Wake Forest University School of Medicine, Winston-Salem, NC; and Department of Pathology and Laboratory Medicine (B.M.), St. Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada.

Abstract

Abstract —We performed a systematic analysis of gene expression in arteries and veins by comparing message profiles of macaque aorta and vena cava media using a cDNA array containing 4048 known human genes, ≈35% of currently named human genes (≈11 000). The data show extensive differences in RNA expression in artery versus vein media. Sixty-eight genes had consistent elevation in message expression by the aorta, but none were elevated in the vena cava. The most differentially expressed gene was regulator of G-protein signaling (RGS) 5, at an expression ratio of 46.5±12.6 (mean±SEM). The data set also contained 2 genes already known to be expressed in the aorta, elastin at 5.0±1.4, and the aortic preferentially expressed gene 1 (APEG-1) at 2.3±0.6. We chose to analyze RGS5 expression further because of its high level of differential expression in the aorta. Levels of RGS5 mRNA were confirmed by Northern analysis and in situ hybridization. A human tissue RNA dot blot showed that RGS5 message is highest in aorta, followed by small intestine, stomach, and then heart. Northern analysis confirmed that RGS5 expression in human aorta is higher than in any region of the heart. RGS5 is a G-protein signaling regulator of unknown specificity most homologous to RGS4, an inhibitory regulator of pressure-induced cardiac hypertrophy. The expression pattern of the 68 differential genes as a whole is a start toward identifying the molecular phenotypes of arteries and veins on a systematic basis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3