Affiliation:
1. From the Myocardial Biology Unit, Boston University School of Medicine, and Cardiovascular Division, Boston University Medical Center, Boston, Mass. Present address of P.J.P is Henry Ford Hospital, Detroit, Mich.
Abstract
Abstract
—Oxidative stress has been implicated in the pathophysiology of myocardial failure. We tested the hypothesis that inhibition of endogenous antioxidant enzymes can regulate the phenotype of cardiac myocytes. Neonatal rat ventricular myocytes in vitro were exposed to diethyldithiocarbamic acid (DDC), an inhibitor of cytosolic (Cu, Zn) and extracellular superoxide dismutase (SOD). DDC inhibited SOD activity and increased intracellular superoxide in a concentration-dependent manner. A low concentration (1 μmol/L) of DDC stimulated myocyte growth, as demonstrated by increases in protein synthesis, cellular protein, prepro–atrial natriuretic peptide, and c-
fos
mRNAs and decreased sarcoplasmic reticulum Ca
2+
ATPase mRNA. These actions were all inhibited by the superoxide scavenger Tiron (4,5-dihydroxy-1,3-benzene disulfonic acid). Higher concentrations of DDC (100 μmol/L) stimulated myocyte apoptosis, as evidenced by DNA laddering, characteristic nuclear morphology, in situ terminal deoxynucleotidyl transferase–mediated nick end-labeling (TUNEL), and increased bax mRNA expression. DDC-stimulated apoptosis was inhibited by the SOD/catalase mimetic EUK-8. The growth and apoptotic effects of DDC were mimicked by superoxide generation with xanthine plus xanthine oxidase. Thus, increased intracellular superoxide resulting from inhibition of SOD causes activation of a growth program and apoptosis in cardiac myocytes. These findings support a role for oxidative stress in the pathogenesis of myocardial remodeling and failure.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
244 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献