Distinct Renin Isoforms Generated by Tissue-Specific Transcription Initiation and Alternative Splicing

Author:

Lee-Kirsch Min Ae1,Gaudet Francois1,Cardoso M. Cristina1,Lindpaintner Klaus1

Affiliation:

1. From the Cardiovascular Division (M.A.L.-K., K.L.), Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Universitätskinderklinik (M.A.L.-K.), Technische Universität, Dresden, Germany; and Max-Delbrück Centre for Molecular Medicine (F.G., M.C.C., K.L.), Berlin, Germany.

Abstract

Abstract —The aspartyl protease renin catalyzes the initial and rate-limiting step in the formation of the biologically active peptide angiotensin II. It is mainly synthesized in the kidney as a preprohormone and secreted via constitutive and regulated pathways. We identified a novel transcript of the rat renin gene, renin b, characterized by the presence of an alternative first exon (exon 1b) that is spliced to exon 2 of the known transcript, termed renin a. We demonstrated that renin b is exclusively expressed in the brain. In contrast, renin a was not expressed in the brain. Using primer extension assays, we mapped the transcriptional start site of this novel mRNA within intron 1 of the rat genomic sequence, suggesting the presence of a brain-specific promoter within intron 1. The presence of a brain-specific renin isoform is evolutionally conserved, as demonstrated by the finding of renin b isoforms in mice and humans. The predicted protein renin b lacks the prefragment as well as a significant portion of the profragment and is therefore predicted not to be a secreted protein, unlike the classically described isoform renin a. As shown by in vitro translation of full-length renin b mRNA in the presence of microsomal membranes, renin b was not targeted into the endoplasmatic reticulum and remained intracellularly in transiently transfected AtT-20 cells. These findings provide evidence for a novel pathway of intracellular angiotensin generation that occurs exclusively in the brain.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3