Sphingosylphosphorylcholine Induces a Hypertrophic Growth Response Through the Mitogen-Activated Protein Kinase Signaling Cascade in Rat Neonatal Cardiac Myocytes

Author:

Sekiguchi Kenichi1,Yokoyama Tomoyuki1,Kurabayashi Masahiko1,Okajima Fumikazu1,Nagai Ryozo1

Affiliation:

1. From the Second Department of Internal Medicine (K.S., T.Y., M.K., R.N.), Gunma University School of Medicine, and Laboratory of Signal Transduction (F.O.), Institute for Molecular and Cellular Regulation, Gunma University School of Medicine, Maebashi, Japan.

Abstract

Abstract —The sphingolipid metabolites, sphingosine (SPH), SPH 1-phosphate (S1P), and sphingosylphosphorylcholine (SPC), can act as intracellular as well as extracellular signaling molecules. These compounds have been implicated in the regulation of cell growth, differentiation, and programmed cell death in nonmyocytes, but the effects of sphingolipid metabolites in cardiac myocytes are not known. Cultured neonatal rat cardiac myocytes were stimulated with SPH (1 to 10 μmol/L), S1P (1 to 10 μmol/L), or SPC (0.1 to 10 μmol/L) for 24 hours to determine the effects of sphingolipid metabolites on the rates of protein synthesis and degradation. Stimulation with SPC led to an increase in the total amount of protein, an accelerated rate of total protein synthesis, and a decrease in protein degradation in a dose-dependent manner. However, S1P had little effect and SPH had no effect on total protein synthesis. In addition, stimulation with SPC led to a 1.4-fold increase in myocardial cell size and enhanced atrial natriuretic factor gene expression. Pretreatment of the cardiac myocytes with pertussis toxin or PD98059 attenuated the SPC-induced hypertrophic growth response. Further, stimulation with SPC increased phosphorylation of mitogen-activated protein kinase (MAPK) and stimulated MAPK enzyme activity. Finally, endothelin-1 stimulated the generation of SPC in cardiac myocytes. The observation that SPC induces a hypertrophic growth response in cardiac myocytes suggests that SPC may play a critical role in the development of cardiac hypertrophy. The effects of SPC could be mediated, in part, by activation of a G protein–coupled receptor and a MAPK signaling cascade.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3