Differential Expression of Cardiac Titin Isoforms and Modulation of Cellular Stiffness

Author:

Cazorla O.1,Freiburg A.1,Helmes M.1,Centner T.1,McNabb M.1,Wu Y.1,Trombitás K.1,Labeit S.1,Granzier H.1

Affiliation:

1. From the Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology (O.C., M.H., M.M., Y.W., K.T., H.G.), Washington State University, Pullman, Wash; the Institut für Anästhesiologie und Operative Intensivmedizin (A.F., T.C., S.L.), Universitätsklinikum, Mannheim, Germany; and European Molecular Biology Laboratory (T.C., S.L.), Heidelberg, Germany.

Abstract

Abstract —Extension of the I-band segment of titin gives rise to part of the diastolic force of cardiac muscle. Previous studies of human cardiac titin transcripts suggested a series of differential splicing events in the I-band segment of titin leading to the so-called N2A and N2B isoform transcripts. Here we investigated titin expression at the protein level in a wide range of mammalian species. Results indicate that the myocardium coexpresses 2 distinct titin isoforms: a smaller isoform containing the N2B element only (N2B titin) and a larger isoform with both the N2B and N2A elements (N2BA titin). The expression ratio of large N2BA to small N2B titin isoforms was found to vary greatly in different species; eg, in the left ventricle the ratio is ≈0.05 in mouse and ≈1.5 in pig. Differences in the expression ratio were also found between atria and ventricles and between different layers of the ventricular wall. Immunofluorescence experiments with isoform-specific antibodies suggest that coexpression of these isoforms takes place at the single-myocyte level. The diastolic properties of single cardiac myocytes isolated from various species expressing high levels of the small (rat and mouse) or large (pig) titin isoform were studied. On average, pig myocytes are significantly less stiff than mouse and rat myocytes. Gel analysis indicates that this result cannot be explained by varying amounts of titin in mouse and pig myocardium. Rather, low stiffness of pig myocytes can be explained by its high expression level of the large isoform: the longer extensible region of this isoform results in a lower fractional extension for a given sarcomere length and hence a lower force. Implications of our findings to cardiac function are discussed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 344 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3