Disruption of Cadherin-Related Junctions Triggers Autocrine Expression of Vascular Endothelial Growth Factor in Bovine Aortic Endothelial Cells

Author:

Castilla M. Angeles1,Arroyo Maria Victoria Alvarez1,Aceituno Esther1,Aragoncillo Paloma1,González-Pacheco Francisco R.1,Texeiro Emma1,Bragado Rafael1,Caramelo Carlos1

Affiliation:

1. From the Laboratorio de Nefrología (M.A.C., M.V.A.A., F.R.G.-P., C.C.) and Servicio de Inmunología (E.A., E.T., R.B.), Fundación Jiménez Díaz, Servicio de Anatomía Patológica (P.A.), Hospital Clínico de San Carlos, Autónoma and Complutense Universities, Madrid, Spain.

Abstract

Abstract —The mechanisms involved in the blockade of proliferation in confluent endothelial cells are insufficiently understood. In this regard, the continuity of intercellular junctions appears to be critical to the regulation of endothelial monolayer cell growth. The present study examined the hypothesis that the disruption of the intercellular adherens junctions will trigger both endothelial cell proliferation and autocrine production of growth factors. With this purpose, we assessed the changes in growth, death resistance, and expression of vascular endothelial growth factor (VEGF) under conditions of disruption of the intercellular junctions between endothelial cells. Disruption of cell junctions was produced by means of a specific anti–vascular endothelial cadherin monoclonal antibody, EGTA, or cytochalasin D. Our results disclosed that these maneuvers induce an increase in VEGF mRNA production, with transcription of the 121–, 165–, and 189–amino acid isoforms of VEGF. Further evidence of the relationship between endothelial cells monolayer continuity and VEGF protein expression was obtained by the demonstration of an increase in VEGF protein, as determined by Western blot, induced by the aforementioned maneuvers, as well as by immunocytochemical detection of increased VEGF staining in the areas surrounding a mechanical endothelial injury and in endothelial cells at subconfluence. In functional terms, the autocrine expression of VEGF was associated with growth-promoting and cytoprotective effects, as assessed by [ 3 H]thymidine uptake, 51 Cr release, and flow cytometry. In conclusion, our results reveal that disruption of homophilic interendothelial junctions induces VEGF expression. Under these conditions, autocrine VEGF appears to have a relevant role in death inhibition and proliferation of endothelial cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3