Affiliation:
1. From the Center for Clinical and Molecular Neurobiology, Department of Neurology, University of Minnesota Medical School, Minneapolis, Minn.
Abstract
Abstract
—Cyclooxygenase (COX) is a prostanoid-synthesizing enzyme present in 2 isoforms: COX-1 and COX-2. Although it has long been hypothesized that prostanoids participate in cerebrovascular regulation, the lack of adequate pharmacological tools has led to conflicting results and has not permitted investigators to define the relative contribution of COX-1 and COX-2. We used the COX-1 inhibitor SC-560 and COX-1–null (COX-1
−/−
) mice to investigate whether COX-1 plays a role in cerebrovascular regulation. Mice were anesthetized (urethane and chloralose) and equipped with a cranial window. Cerebral blood flow (CBF) was measured by laser Doppler flowmetry or by the
14
C-iodoantipyrine technique with quantitative autoradiography. In wild-type mice, SC-560 (25 μmol/L) reduced resting CBF by 21±4% and attenuated the CBF increase produced by topical application of bradykinin (−59%) or calcium ionophore A23187 (−49%) and by systemic hypercapnia (−58%) (
P
<0.05 to 0.01). However, SC-560 did not reduce responses to acetylcholine or the increase in somatosensory cortex blood flow produced by vibrissal stimulation. In COX-1
−/−
mice, resting CBF assessed by
14
C-iodoantipyrine was reduced (−13% to −20%) in cerebral cortex and other telencephalic regions (
P
<0.05). The CBF increase produced by bradykinin, A23187, and hypercapnia, but not acetylcholine or vibrissal stimulation, were attenuated (
P
<0.05 to 0.01). The free radical scavenger superoxide dismutase attenuated responses to bradykinin and A23187 in wild-type mice but not in COX-1
−/−
mice, suggesting that COX-1 is the source of the reactive oxygen species known to mediate these responses. The data provide evidence for a critical role of COX-1 in maintaining resting vascular tone and in selected vasodilator responses of the cerebral microcirculation.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
185 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献