Myogenic Activation and Calcium Sensitivity of Cannulated Rat Mesenteric Small Arteries

Author:

VanBavel Ed1,Wesselman Jos P. M.1,Spaan Jos A. E.1

Affiliation:

1. From the Academic Medical Center, University of Amsterdam (Netherlands), Department of Medical Physics and Cardiovascular Research Institute.

Abstract

Abstract —Pressure-induced activation of vascular smooth muscle may involve electromechanical as well as nonelectromechanical coupling mechanisms. We compared calcium-tone relations of cannulated rat mesenteric small arteries during pressure-induced activation, depolarization (16 to 46 mmol/L K + ), and α 1 -adrenergic stimulation (1 μmol/L phenylephrine). The intracellular calcium concentration was expressed as the fura-2 ratio, normalized to the maximal and minimal ratios. In order to compare activation levels at various pressures, tone was expressed as the ratio of active wall tension to the maximal active tension. The passive and maximal active pressure-diameter relations needed for the calculation of tone were determined in a separate set of experiments, using isometric loading of cannulated vessels. Pressure steps from 20 to 60 and then to 100 mm Hg caused a modest rise of calcium. Nifedipine (1 μmol/L) blocked both the calcium rise and the resulting myogenic responses. Electromechanical coupling could not fully account for the myogenic response: the calcium sensitivity, defined as the slope of the calcium-tone relation, was five times higher during pressure-induced activation compared with potassium stimulation and twice as high as the sensitivity during α 1 -adrenergic stimulation. We therefore conclude that the myogenic response involves a small but necessary rise in calcium due to influx through L-type calcium channels, as well as a nonelectromechanical coupling mechanism that greatly enhances the calcium sensitivity of the contractile machinery.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3