Simulated Ischemia in Flow-Adapted Endothelial Cells Leads to Generation of Reactive Oxygen Species and Cell Signaling

Author:

Wei Zhihua1,Costa Karen1,Al-Mehdi Abu B.1,Dodia Chandra1,Muzykantov Vladimir1,Fisher Aron B.1

Affiliation:

1. From the Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pa.

Abstract

Abstract —We have previously shown that increased reactive oxygen species (ROS) generation occurs with ischemia in the oxygenated lung and have hypothesized that mechanotransduction is the initiating event. In the present study, we developed an in vitro model of oxygenated ischemia by interrupting medium flow to flow-adapted bovine pulmonary artery endothelial cells in an artificial capillary system. Cellular oxygenation during the “ischemic” period was maintained by perfusing medium over the abluminal surface of porous capillaries. Cells were assessed for ROS generation, nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) binding activities, and DNA synthesis using dichlorofluorescein fluorescence by flow cytometry and spectrofluorometry, electrophoretic mobility shift assay of nuclear extracts with NF-κB–specific or AP-1–specific 32 P-labeled oligonucleotides, and 3 H-thymidine incorporation into DNA. Cells that were flow adapted for 2 to 7 days with 1 to 2 dyne/cm 2 shear stress exhibited a 1.6- to 1.9-fold increase in ROS generation during 1 hour of simulated ischemia compared with continuously perfused cells. This effect was abolished by diphenyleneiodonium chloride (DPI), indicating a role for a flavoprotein such as NADPH oxidase. The increase in ROS generation with ischemia was similar for cells from low and high passages. With ischemia, flow-adapted cells exhibited increases of 1.7-fold in nuclear NF-κB and 1.5-fold in nuclear AP-1; these changes were abolished by pretreatment with N -acetylcysteine or DPI. Ischemia for 24 hours resulted in a 1.8-fold increase of 3 H-thymidine incorporation into DNA and a significant increase of cells entering the cell cycle, as indicated by flow cytometry with propidium iodide. We conclude that flow-adapted endothelial cells generate ROS with ischemia that results in activation of NF-κB and AP-1 and an increase of DNA synthesis. This effect is not mediated by hypoxia, implicating a role for mechanotransduction in ischemia-mediated cell signaling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3