2-Deoxy-ATP Enhances Contractility of Rat Cardiac Muscle

Author:

Regnier M.1,Rivera A. J.1,Chen Y.1,Chase P. B.1

Affiliation:

1. From the Departments of Bioengineering (M.R., A.J.R.), Radiology (Y.C., P.B.C.), and Physiology and Biophysics (P.B.C.), School of Medicine, University of Washington, Seattle, Wash.

Abstract

Abstract —To investigate the kinetic parameters of the crossbridge cycle that regulate force and shortening in cardiac muscle, we compared the mechanical properties of cardiac trabeculae with either ATP or 2-deoxy-ATP (dATP) as the substrate for contraction. Comparisons were made in trabeculae from untreated rats (predominantly V1 myosin) and those treated with propylthiouracil (PTU; V3 myosin). Steady-state hydrolytic activity of cardiac heavy meromyosin (HMM) showed that PTU treatment resulted in >40% reduction of ATPase activity. dATPase activity was >50% elevated above ATPase activity in HMM from both untreated and PTU-treated rats. V max of actin-activated hydrolytic activity was also >50% greater with dATP, whereas the K m for dATP was similar to that for ATP. This indicates that dATP increased the rate of crossbridge cycling in cardiac muscle. Increases in hydrolytic activity were paralleled by increases of 30% to 80% in isometric force (F max ), rate of tension redevelopment ( k tr ), and unloaded shortening velocity ( V u ) in trabeculae from both untreated and PTU-treated rats (at maximal Ca 2+ activation), and F-actin sliding speed in an in vitro motility assay ( V f ). These results contrast with the effect of dATP in rabbit psoas and soleus fibers, where F max is unchanged even though k tr , V u , and V f are increased. The substantial enhancement of mechanical performance with dATP in cardiac muscle suggests that it may be a better substrate for contractility than ATP and warrants exploration of ribonucleotide reductase as a target for therapy in heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3