Electrical Coupling Between Endothelial Cells and Smooth Muscle Cells in Hamster Feed Arteries

Author:

Emerson Geoffrey G.1,Segal Steven S.1

Affiliation:

1. From The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Conn.

Abstract

Abstract —Endothelial cells (ECs) govern smooth muscle cell (SMC) tone via the release of paracrine factors (eg, NO and metabolites of arachidonic acid). We tested the hypothesis that ECs can promote SMC relaxation or contraction via direct electrical coupling. Vessels (resting diameter, 57±3 μm; length, 4 mm) were isolated, cannulated, and pressurized (75 mm Hg; 37°C). Two microelectrodes were used to simultaneously impale 2 cells (ECs or SMCs) in the vessel wall separated by 500 μm. Impalements of one EC and one SMC (n=26) displayed equivalent membrane potentials at rest, during spontaneous oscillations, and during hyperpolarization and vasodilation to acetylcholine. Injection of −0.8 nA into an EC caused hyperpolarization (≈5 mV) and relaxation of SMCs (dilation, ≈5 μm) along the vessel segment. In a reciprocal manner, +0.8 nA caused depolarization (≈2 mV) of SMCs with constriction (≈2 μm). Current injection into SMCs while recording from ECs produced similar results. We conclude that ECs and SMCs are electrically coupled to each other in these vessels, such that electrical signals conducted along the endothelium can be directly transmitted to the surrounding smooth muscle to evoke vasomotor responses.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 221 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3