Heme Oxygenase-1 Inhibits Atherosclerotic Lesion Formation in LDL-Receptor Knockout Mice

Author:

Ishikawa Kazunobu1,Sugawara Daisuke1,Wang Xu-ping1,Suzuki Kazunori1,Itabe Hiroyuki1,Maruyama Yukio1,Lusis Aldons J.1

Affiliation:

1. From the First Department of Internal Medicine (K.I., D.S., Y.M.) and Second Department of Anatomy (K.S.), Fukushima Medical University, Fukushima, Japan; Department of Microbiology and Molecular Pathology (H.I.), Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan; and Departments of Cardiology (A.J.L.) and Microbiology and Molecular Genetics (X.-p.W.), School of Medicine, University of California, Los Angeles, Calif.

Abstract

Abstract —Heme oxygenase-1 (HO-1) is induced by a variety of conditions associated with oxidative stress. We demonstrated that mildly oxidized LDL markedly induces HO-1 in human aortic endothelial and smooth muscle cell cocultures and that its induction results in the attenuation of monocyte chemotaxis resulting from treatment with mildly oxidized LDL in vitro. To elucidate the role of HO-1 in the development of atherosclerotic lesions in vivo, we modulated HO-1 expression in LDL-receptor knockout mice fed high-fat diets. During 6-week high-fat diet trials, intraperitoneal injections of hemin (H group) or hemin and desferrioxamine (HD group) to induce HO-1, Sn-protoporphyrin IX to inhibit HO-1 (Sn group), and saline as control (C group) were performed. Both the H and HD groups showed significantly less mean atherosclerotic lesions in the proximal aorta compared with the C group, whereas the Sn group showed larger lesion compared with the C group. Modulation of HO expression and HO activities were confirmed by Northern blot analysis and HO activity assay. Immunohistochemical studies revealed significant HO-1 expression in atherosclerotic lesions, where oxidized phospholipids also localized. Major cell types expressing HO-1 were macrophages and foam cells in the lesions. HO modulations affected plasma lipid hydroperoxide (LPO) levels and nitrite/nitrate levels. These results suggest that HO-1, induced under hyperlipidemia, functioned as an intrinsic protective factor against atherosclerotic lesion formation, possibly by inhibiting lipid peroxidation and influencing the nitric oxide pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 278 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3