Rapid Turnover of Connexin43 in the Adult Rat Heart

Author:

Beardslee Michael A.1,Laing James G.1,Beyer Eric C.1,Saffitz Jeffrey E.1

Affiliation:

1. From the Departments of Medicine and Pathology (M.A.B., J.G.L., J.E.S.), Washington University School of Medicine, St Louis, Mo, and the Department of Pediatrics (E.C.B.), University of Chicago, Chicago, Ill.

Abstract

Abstract —Remodeling of the distribution of gap junctions is an important feature of anatomic substrates of arrhythmias in patients with healed myocardial infarcts. Mechanisms underlying this process are poorly understood but probably involve changes in gap junction protein (connexin) synthesis, assembly into channels, and degradation. The half-life of the principal cardiac gap junction protein, connexin43 (Cx43), is only 1.5 to 2 hours in primary cultures of neonatal myocytes, but it is unknown whether rapid turnover of Cx43 occurs in the adult heart or is unique to disaggregated neonatal myocytes that are actively reestablishing connections in vitro. To characterize connexin turnover dynamics in the adult heart and to elucidate its potential role in remodeling of gap junctions, we measured Cx43 turnover kinetics and characterized the proteolytic pathways involved in Cx43 degradation in isolated perfused adult rat hearts. Hearts were labeled for 40 minutes with Krebs-Henseleit buffer containing [ 35 S]methionine, and then chase perfusions were performed with nonradioactive buffer for 0, 60, 120, and 240 minutes. Quantitative immunoprecipitation assays of Cx43 radioactivity in 4 hearts at each time point yielded a monoexponential decay curve indicating a Cx43 half-life of 1.3 hours. Proteolytic pathways responsible for Cx43 degradation were elucidated by perfusing isolated rat hearts for 4 hours with specific inhibitors of either lysosomal or proteasomal proteolysis. Immunoblot analysis demonstrated significant increases (≈30%) in Cx43 content in hearts perfused with either lysosomal or proteasomal pathway inhibitors. Most of the Cx43 in hearts perfused with lysosomal inhibitors consisted of phosphorylated isoforms, whereas nonphosphorylated Cx43 accumulated selectively in hearts perfused with a specific proteasomal inhibitor. These results indicate that Cx43 turns over rapidly in the adult heart and is degraded by multiple proteolytic pathways. Regulation of Cx43 degradation could play an important role in gap junction remodeling in response to cardiac injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3