Lipoprotein Lipase Increases Lipoprotein Binding to the Artery Wall and Increases Endothelial Layer Permeability by Formation of Lipolysis Products

Author:

Rutledge John C.1,Woo Mable M.1,Rezai Allen A.1,Curtiss Linda K.1,Goldberg Ira J.1

Affiliation:

1. From the Department of Internal Medicine (J.C.R., M.M.W., A.A.R.), School of Medicine, University of California, Davis; Scripps Research Institute (L.K.C.), La Jolla, Calif; and the Department of Medicine (I.J.G.), Columbia University College of Physicians & Surgeons, New York, NY.

Abstract

Abstract Mechanisms responsible for the accumulation of low-density lipoprotein (LDL) were investigated in a new model, the perfused hamster aorta. To do this, we developed a method to study LDL flux in real time in individually perfused arteries; each artery served as its own control. Using quantitative fluorescence microscopy, the rates of LDL accumulation and efflux were separately determined. Perfusion of arteries with buffer plus lipoprotein lipase (LpL) increased LDL accumulation 5-fold (0.1±0.03 mV/min [control] versus 0.5±0.05 mV/min [LpL]) by increasing LDL retention in the artery wall. This effect was blocked by heparin and monoclonal antibodies directed against the amino-terminal region of apolipoprotein B (apo B). This suggests that specific regions of apo B are involved in LDL accumulation within arteries. Also, the effect of hydrolysis of triglyceride-rich lipoproteins on endothelial barrier function was studied. We compared endothelial layer permeability using a water-soluble reference molecule, fluorescently labeled dextran. When LpL was added to hypertriglyceridemic plasma, dextran accumulation within the artery wall increased >4-fold (0.024±0.01 mV/min [control] versus 0.098±0.05 mV/min [LpL]). Under the same conditions, LpL increased LDL accumulation ≈3-fold (0.016±0.003 mV/min [control] versus 0.047±0.013 mV/min [LpL]). Rapid efflux of LDL from the artery wall indicated that increased endothelial layer permeability was the primary mechanism during periods of increased lipolysis. Our data demonstrate two LpL-mediated effects that may increase the amount of LDL in the artery wall. These findings may pertain to the observed relationship between increased postprandial lipemia and atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3