Overexpression of Insulin-Like Growth Factor-1 Attenuates the Myocyte Renin-Angiotensin System in Transgenic Mice

Author:

Leri Annarosa1,Liu Yu1,Wang Xiaowei1,Kajstura Jan1,Malhotra Ashwani1,Meggs Leonard G.1,Anversa Piero1

Affiliation:

1. From the Department of Medicine, New York Medical College, Valhalla, NY.

Abstract

Abstract —Constitutive overexpression of insulin-like growth factor-1 (IGF-1) in myocytes protects them from apoptosis and interferes with myocyte hypertrophy in the normal and pathological heart. Conversely, angiotensin II (Ang II) triggers cell death and promotes myocyte hypertrophy. Moreover, activation of p53 upregulates the cellular renin-angiotensin system (RAS). Therefore, IGF-1 overexpression in FVB. Igf +/− mice may downregulate the local RAS through the attenuation of p53 and p53-inducible genes. On this basis, p53 DNA binding activity to angiotensinogen (Aogen), bax, and the AT 1 receptor was determined in left ventricular myocytes from FVB. Igf −/− and FVB. Igf +/− mice. The quantity of Bax, Bcl-2, Aogen, and AT 1 receptor in these cells was evaluated. The presence of Mdm2-p53 complexes was also established. Finally, Ang II levels in myocytes were measured. Upregulation of IGF-1 in myocytes was associated with a protein-to-protein interaction between Mdm2 and p53, which attenuated p53 transcriptional activity for bax, Aogen, and AT 1 receptor. Similarly, the amount of Bax, Aogen, and AT 1 receptor proteins in these cells decreased. In contrast, the expression of Bcl-2 remained constant. The downregulation of Aogen in myocytes from FVB. Igf +/− mice was characterized by a reduction in Ang II. In conclusion, IGF-1 negatively influences the myocyte RAS through the upregulation of Mdm2 and its binding to p53. This may represent the molecular mechanism responsible for the effects of IGF-1 on cell viability and myocyte hypertrophy in the nonpathological and pathological heart in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3