Role of Vascular Cell Adhesion Molecule-1 and Fibronectin Connecting Segment-1 in Monocyte Rolling and Adhesion on Early Atherosclerotic Lesions

Author:

Huo Yuqing1,Hafezi-Moghadam Ali1,Ley Klaus1

Affiliation:

1. From the Department of Biomedical Engineering, University of Virginia, Health Science Center, Charlottesville, Va.

Abstract

Abstract —Atherosclerotic lesion development seems to be inflammatory in nature and involves the recruitment of monocytes to the vessel wall. In this study, we investigated the role of vascular cell adhesion molecule-1 (VCAM-1) and fibronectin (FN) connecting segment-1 containing the amino acid sequence ILDV as functional ligands for α 4 β 1 integrin (VLA-4) in monocyte rolling and adherence to early atherosclerotic lesions. Carotid arteries of apolipoprotein E–deficient mice were isolated and perfused with monocytes or U937 cells. Cell adhesion was reduced 95±4% by monoclonal antibodies HP1/2 and HP2/1, which block VLA-4 binding to both VCAM-1 and FN connecting segment-1. mAb HP1/3 preferentially blocked interaction of VLA-4 with FN but not VCAM-1 and decreased adhesion by 30±8%. In contrast, blocking VCAM-1 by perfusing the isolated carotid artery with mAb MK-2.7 reduced adhesion by 75±12%. Mononuclear cell adhesion to the early atherosclerotic endothelium was inhibited by 68±10% in the presence of EILDVPST but not in the presence of control peptide EIDVLPST. When VLA-4 or VCAM-1 was blocked, more mononuclear cells rolled on early lesions at significantly higher (approximately doubled) rolling velocities. These data demonstrate that (1) blockade of VCAM-1 can abrogate the majority (75±12%) of VLA-4–dependent monocyte adhesion on early atherosclerotic endothelia and (2) ILDV peptide interferes with VLA-4 binding to both VCAM-1 and FN and may be useful in limiting monocyte adhesion to atherosclerotic lesions. (Circ Res. 2000;87:153-159.)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3