Ionic Mechanisms Responsible for the Electrocardiographic Phenotype of the Brugada Syndrome Are Temperature Dependent

Author:

Dumaine Robert1,Towbin Jeffrey A.1,Brugada Pedro1,Vatta Matteo1,Nesterenko Dmitri V.1,Nesterenko Vladislav V.1,Brugada Josep1,Brugada Ramon1,Antzelevitch Charles1

Affiliation:

1. From the Departments of Molecular Biology and Experimental Cardiology (R.D., D.M.V., V.V.N., C.A.), Masonic Medical Research Laboratory, Utica, NY; Departments of Pediatrics (J.A.T., M.V.) and Medicine (R.B.), Baylor College of Medicine, Houston, Texas; Cardiovascular Center (P.B.), OLV Hospital, Aalst, Belgium; and Cardiovascular Institute (J.B.), Hospital Clinic, University of Barcelona, Barcelona, Spain.

Abstract

Abstract —The Brugada syndrome is a major cause of sudden death, particularly among young men of Southeast Asian and Japanese origin. The syndrome is characterized electrocardiographically by an ST-segment elevation in V1 through V3 and a rapid polymorphic ventricular tachycardia that can degenerate into ventricular fibrillation. Our group recently linked the disease to mutations in SCN5A , the gene encoding for the α subunit of the cardiac sodium channel. When heterologously expressed in frog oocytes, electrophysiological data recorded from the Thr1620Met missense mutant failed to adequately explain the electrocardiographic phenotype. Therefore, we sought to further characterize the electrophysiology of this mutant. We hypothesized that at more physiological temperatures, the missense mutation may change the gating of the sodium channel such that the net outward current is dramatically augmented during the early phases of the right ventricular action potential. In the present study, we test this hypothesis by expressing Thr1620Met in a mammalian cell line, using the patch-clamp technique to study the currents at 32°C. Our results indicate that Thr1620Met current decay kinetics are faster when compared with the wild type at 32°C. Recovery from inactivation was slower for Thr1620Met at 32°C, and steady-state activation was significantly shifted. Our findings explain the features of the ECG of Brugada patients, illustrate for the first time a cardiac sodium channel mutation of which the arrhythmogenicity is revealed only at temperatures approaching the physiological range, and suggest that some patients may be more at risk during febrile states.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 487 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3