Formation of the Atrioventricular Septal Structures in the Normal Mouse

Author:

Webb Sandra1,Brown Nigel A.1,Anderson Robert H.1

Affiliation:

1. From the Department of Anatomy and Developmental Biology, St George’s Hospital Medical School (S.W., N.A.B.), and the Section of Paediatrics, National Heart & Lung Institute, Imperial College School of Medicine (R.H.A.), London, UK.

Abstract

Abstract —It is sometimes thought that formation of the atrioventricular septum is equated with fusion of the endocardial cushions and that failure of fusion can explain all deficiencies of atrioventricular septation. Clearly, this is simplistic, but the exact contribution of different primordia to atrioventricular septation is not well understood. To clarify this, we studied normal mouse embryos (days 10 to 15 of gestation), which were serially sectioned and examined by light microscopy. Another group of embryos was examined by scanning electron microscopy after microdissection. Our results show that development of the atrioventricular septal area is highly complex. Proper formation requires the following: remodeling of the inner heart curvature, rotation of the horns of the systemic venous sinus around the pulmonary portal, expansion of the right atrioventricular junction, formation of the muscular atrial and ventricular septa, bridging by the dextrodorsal outflow ridge and the superior endocardial cushion, fusion with the inferior margins of the venous valves, and formation of the mouth of the coronary sinus from the cranial muscular wall of the left sinus horn. Multiple primordia contribute to a central mesenchymal mass (the “septum intermedium”), including the mesenchyme on the leading edge of the primary atrial septum, the atrioventricular endocardial cushions, and the cap of mesenchyme on the spina vestibuli. Fusion of these components closes the ostium primum, completing atrial and atrioventricular septation. Additionally, the spina vestibuli has a mesodermal core, which contributes to the muscularization of the lower margin of the oval fossa. This contrasts with the formation of the upper rim, which occurs as a result of an infolding of the atrial wall itself.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference35 articles.

1. THE ANATOMY AND EMBRYOLOGY OF ENDOCARDIAL CUSHION DEFECTS

2. Developmental aspects of atrioventricular septal defects

3. Developmental anatomy of the membranous part of the ventricular septum in the human heart.

4. Lev M Bharati S. The fibrous skeleton of the heart. In: Hurst JW ed. The Heart (Update lV) . New York NY: McGraw-Hill; 1981:7–17.

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3