The Distribution of Refractory Periods Influences the Dynamics of Ventricular Fibrillation

Author:

Choi Bum-Rak1,Liu Tong1,Salama Guy1

Affiliation:

1. From the Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa.

Abstract

Abstract —The spatial and dynamic properties of ventricular fibrillation (VF) may be random or related to cellular electrical properties of the normal heart. Local activation intervals (AIs) in VF may depend on the local refractory period (RP), and sustained VF may require a steep action potential (AP) restitution curve. In guinea pig hearts, AP durations (APDs) and RPs on the epicardium are shorter at the apex and progressively longer toward the base, producing gradients of RPs that may influence the spatial organization of VF. In the present study, the influence of APDs on VF dynamics is investigated in perfused guinea pig hearts stained with a voltage-sensitive dye by comparing APD gradients to the dynamics of VF elicited by burst pacing. In VF, AIs had no clear periodicity, but average AIs were shorter at the apex (57.5±8.1 ms) than the base (76.1±1.5 ms, n=6, P <0.05) and had gradients similar to APD gradients (correlation coefficient 0.71±0.04). Analysis of local velocity vectors showed no preferential directions, and fast Fourier transform (FFT) power spectra were broad (10 to 24 Hz) with multiple peaks (n=6). However, the selective inhibition of delayed K + rectifying currents, I Kr (E4031; 0.5 μmol/L, n=3), shifted FFT spectra from complex to a lower dominant frequency (10 Hz) and altered repolarization but retained the correlation between mean AIs and RPs. Thus, VF dynamics are consistent with a multiple wave-make and wave-break mechanism, and the local RP influences VF dynamics by limiting the range of VF frequencies and AIs at each site. The full text of this article is available at http://www.circresaha.org.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3