Vascular Endothelial Growth Factor–Stimulated Actin Reorganization and Migration of Endothelial Cells Is Regulated via the Serine/Threonine Kinase Akt

Author:

Morales-Ruiz Manuel1,Fulton David1,Sowa Grzegorz1,Languino Lucia R.1,Fujio Yasushi1,Walsh Kenneth1,Sessa William C.1

Affiliation:

1. From the Departments of Pharmacology (M.M.-R., D.F., G.S., W.C.S.) and Pathology (L.R.L.) and Molecular Cardiobiology Program (M.M.-R., D.F., G.S., W.C.S.), Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Conn, and Division of Cardiovascular Research (Y.F., K.W.), St Elizabeth’s Medical Center, Boston, Mass.

Abstract

Abstract —Vascular endothelial growth factor (VEGF) induces endothelial cell proliferation, migration, and actin reorganization, all necessary components of an angiogenic response. However, the distinct signal transduction mechanisms leading to each angiogenic phenotype are not known. In this study, we examined the ability of VEGF to stimulate cell migration and actin rearrangement in microvascular endothelial cells infected with adenoviruses encoding β-galactosidase (β-gal), activation-deficient Akt (AA-Akt), or constitutively active Akt (myr-Akt). VEGF increased cell migration in cells transduced with β-gal, whereas AA-Akt blocked VEGF-induced cell locomotion. Interestingly, myr-Akt transduction of bovine lung microvascular endothelial cells stimulated cytokinesis in the absence of VEGF, suggesting that constitutively active Akt, per se, can initiate the process of cell migration. Treatment of β-gal–infected endothelial cells with an inhibitor of NO synthesis blocked VEGF-induced migration but did not influence migration initiated by myr-Akt. In addition, VEGF stimulated remodeling of the actin cytoskeleton into stress fibers, a response abrogated by infection with dominant-negative Akt, whereas transduction with myr-Akt alone caused profound reorganization of F-actin. Collectively, these data demonstrate that Akt is critically involved in endothelial cell signal transduction mechanisms leading to migration and that the Akt/endothelial NO synthase pathway is necessary for VEGF-stimulated cell migration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3