Connexin45 Expression Is Preferentially Associated With the Ventricular Conduction System in Mouse and Rat Heart

Author:

Coppen Steven R.1,Dupont Emmanuel1,Rothery Stephen1,Severs Nicholas J.1

Affiliation:

1. From the National Heart and Lung Institute, Imperial College School of Medicine, London, England.

Abstract

Abstract —Cardiac myocytes are electrically coupled by gap junctions, clusters of low-resistance intercellular channels composed of connexins. Variations in the quantities and spatial distribution of different connexin types have been implicated in regional differentiation of electrophysiological properties in the heart. Although independent studies have demonstrated that connexin43 is abundant in working ventricular myocardium and that connexin40 is preferentially expressed in the atrioventricular conduction system of a number of species, information on the spatial distribution of connexin45 in the heart is limited to data obtained using an antibody raised to a single peptide sequence. In the present study, we report on the production and characterization of a new anti-connexin45 antibody and its application to the investigation of connexin45 expression in mouse and rat myocardium. The affinity-purified antiserum, raised in guinea pig to residues 354 to 367 of human connexin45, recognized a single 45-kD band on Western blots of HeLa cells transfected to express connexin45 and gave punctate immunolabeling at the cell borders, demonstrated by freeze-fracture cytochemistry to represent gap junctions. Only low levels of connexin45 mRNA were detected on Northern blots of mouse and rat cardiac tissues, and connexin45 protein levels were below the limit of detection on Western blots. Confocal microscopy of immunolabeled ventricular tissue revealed that the major part of the working myocardium was immunonegative for connexin45. A clearly defined zone containing connexin45-expressing cells was, however, localized to the endocardial surface, overlapping with connexin40-expressing myocytes of the conduction system. As these results contrast with the prevailing view that connexin45 is widely distributed in working ventricular myocytes, we compared the immunolabeling pattern obtained with a commercially supplied anti-connexin45 antiserum raised against the same peptide that was used in previous studies. The commercial connexin45 antiserum gave widespread labeling throughout the ventricular myocardium, but this labeling was inhibited by a six–amino acid peptide matching part of the connexin43 sequence, indicating cross-reaction of the commercial connexin45 antiserum with connexin43 in the tissue. Further evidence for such cross-reactivity came from observations on connexin43-transfected cells, which gave positive immunolabeling with the commercial anti-connexin45 antiserum. Our demonstration of a specific association of connexin45 with connexin40-expressing myocytes in rat and mouse ventricle raises the possibility that connexin45 contributes to the modulation of electrophysiological properties in the ventricular conduction system and highlights the need for reappraisal of the distribution and role of connexin45 in other species.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference49 articles.

1. The Gap Junction Communication Channel

2. COMMENTARY: Role of connexin genes in growth control

3. The role of gap junction membrane channels in development

4. Connexins in mammalian heart function

5. Severs NJ Dupont E Kaprielian RR Yeh H-I Rothery S. Gap junctions and connexins in the cardiovascular system. In: Yacoub MH Carpentier A Pepper J Fabiani J-N eds. Annual of Cardiac Surgery 1996: 9 th Edition . London UK: Current Science; 1996:31–44.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3