Direct Visualization of Lipid Deposition and Reverse Lipid Transport in a Perfused Artery

Author:

Rutledge J. C.1,Mullick A. E.1,Gardner G.1,Goldberg I. J.1

Affiliation:

1. From the Division of Cardiovascular Medicine (J.C.R., A.E.M., G.G.), University of California, Davis, and Department of Medicine (I.J.G.), Columbia University College of Physicians and Surgeons, New York.

Abstract

Abstract —The major goal of this study was to determine the interactions of VLDL surface and core lipids with the artery wall. We first demonstrated in vitro that surface lipid in VLDL could be traced using the phospholipid-like fluorescent probe 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine (DiI). The core of VLDL particles was traced by fluorescently labeling apolipoprotein B with TRITC. The labeled VLDLs were perfused through rat carotid arteries, and accumulation of the fluorescently labeled VLDL components in the arterial walls was determined by quantitative fluorescence microscopy. Addition of lipoprotein lipase increased the accumulation of both DiI and TRITC by >2.3-fold. Histological examination showed that DiI and TRITC were primarily localized to the endothelial layer; however, DiI also accumulated as small “lakes” deeper in the artery, in a subendothelial position. Addition of HDL to the perfusion decreased the accumulation of surface lipid and apolipoprotein B–containing particles and eliminated the DiI lakes. Moreover, the increase in endothelial layer permeability associated with lipolysis was attenuated 21% by HDL. If VLDL surface lipid first was allowed to accumulate in the arterial wall, its subsequent rate of loss was more than twice as fast if HDL was included in the perfusate. These studies directly demonstrate atherogenic effects of VLDL lipolysis and their inhibition by HDL.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3