Mechanotransduction of Rat Aortic Vascular Smooth Muscle Cells Requires RhoA and Intact Actin Filaments

Author:

Numaguchi Kotaro1,Eguchi Satoru1,Yamakawa Tadashi1,Motley Evangeline D.1,Inagami Tadashi1

Affiliation:

1. From the Department of Biochemistry (K.N., S.E., T.Y., T.I.), Vanderbilt University School of Medicine, and Department of Anatomy and Physiology (E.D.M.), Meharry Medical College, Nashville, Tenn.

Abstract

Abstract —The growth-promoting effect of mechanical stress on vascular smooth muscle cells (VSMCs) has been implicated in the progress of vascular disease in hypertension. Extracellular signal–regulated kinases (ERKs) have been implicated in cellular responses, such as vascular remodeling, induced by mechanical stretch. However, it remains to be determined how mechanical stretch activates ERKs. The cytoskeleton seems the most likely candidate for force transmission into the interior of the cell. Therefore, we examined (1) whether the cytoskeleton involves mechanical stretch–induced signaling, (2) whether Rho is activated by stretch, and (3) whether Rho mediates the stretch-induced signaling in rat cultured VSMCs. Mechanical stretch activated ERKs, with a peak response observed at 20 minutes, followed by a significant increase in DNA synthesis. Treatment with the ERK kinase-1 inhibitor, PD98059, inhibited the stretch-induced increase in DNA synthesis. Cytochalasin D, which selectively disrupts the network of actin filaments, markedly inhibited stretch-induced ERK activation. In the control state, RhoA was observed predominantly in the cytosolic fraction, but it was translocated in part to the particulate fraction in response to mechanical stretch. Botulinum C3 exoenzyme, which inactivates Rho p21 (known to participate in the reorganization of the actin cytoskeleton), attenuated stretch-induced ERK activation. Inhibition of Rho kinase (p160ROCK) also suppressed stretch-induced ERK activation dose dependently. Our results suggest that mechanotransduction in VSMCs is dependent on intact actin filaments, that Rho is activated by stretch, and that Rho/p160ROCK mediates stretch-induced ERK activation and vascular hyperplasia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3