Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model

Author:

Shi Weibin1,Wang Nicholas J.1,Shih Diana M.1,Sun Victor Z.1,Wang Xuping1,Lusis Aldons J.1

Affiliation:

1. From the Department of Medicine and Department of Microbiology and Molecular Genetics, University of California, Los Angeles.

Abstract

Abstract —Lipids, monocytes, and arterial wall cells are primary components involved in atherogenesis. Using the inbred mouse strains C57BL/6J (B6) and C3H/HeJ (C3H), which have been extensively studied as models of the genetic control of diet-induced atherosclerosis, we examined which of these components determine genetic susceptibility. To test whether dietary responsiveness is involved, a congenic strain of C3H carrying an apoE-null allele (apoE −/− ) was constructed. Although C3H.apoE −/− mice had higher plasma cholesterol levels, they developed much smaller lesions than their B6.apoE −/− counterpart on either chow or Western diets. Reciprocal bone marrow transplantation between the strains, with congenics carrying the same H-2 haplotype, was performed to examine the role of monocytes. The atherosclerosis susceptibility was not altered in the recipient mice, indicating that variations in monocyte function were not involved. Endothelial cells isolated from the aorta of B6 mice exhibited a dramatic induction of monocyte chemotactic protein-1, macrophage colony–stimulating factor, vascular cell adhesion molecule-1, and heme oxygenase-1 in response to minimally modified LDL, whereas endothelial cells from C3H mice showed little or no induction. In a set of recombinant inbred strains derived from the B6 and C3H parental strains, endothelial responses to minimally modified LDL cosegregated with aortic lesion size. These data provide strong evidence that endothelial cells, but not monocytes or plasma lipid levels, account for the difference in susceptibility to atherosclerosis between the 2 mouse strains.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3