Endothelial Cells of Hematopoietic Origin Make a Significant Contribution to Adult Blood Vessel Formation

Author:

Crosby Jeffrey R.1,Kaminski Wolfgang E.1,Schatteman Gina1,Martin Paul J.1,Raines Elaine W.1,Seifert Ron A.1,Bowen-Pope Daniel F.1

Affiliation:

1. From the Department of Pathology (J.R.C., W.E.K., E.W.R., R.A.S., D.F.B.-P.), University of Washington, Seattle, Wash; and Division of Clinical Research (P.J.M.), Fred Hutchinson Cancer Research Center, Seattle, Wash. Current affiliations: J.R.C., S.C. Johnson Research Center, Mayo Clinic Scottsdale, Scottsdale, Ariz; W.E.K., Department of Clinical Chemistry and Laboratory Medicine, University of Regensburg Medical School, Regensburg, Germany; and G.S., Department of Anatomy and Cell Biology,...

Abstract

Granulation tissue formation is an example of new tissue development in an adult. Its rich vascular network has been thought to derive via angiogenic sprouting and extension of preexisting vessels from the surrounding tissue. The possibility that circulating cells of hematopoietic origin can differentiate into vascular endothelial cells (ECs) in areas of vascular remodeling has recently gained credibility. However, no quantitative data have placed the magnitude of this contribution into a physiological perspective. We have used hematopoietic chimeras to determine that 0.2% to 1.4% of ECs in vessels in control tissues derived from hematopoietic progenitors during the 4 months after irradiation and hematopoietic recovery. By contrast, 8.3% to 11.2% of ECs in vessels that developed in sponge-induced granulation tissue during 1 month derived from circulating hematopoietic progenitors. This recruitment of circulating progenitors to newly forming vessels would be difficult to observe in standard histological studies, but it is large enough to be encouraging for attempts to manipulate this contribution for therapeutic gain.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 456 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3