Lactosylceramide Stimulates Human Neutrophils to Upregulate Mac-1, Adhere to Endothelium, and Generate Reactive Oxygen Metabolites In Vitro

Author:

Arai Toshiyuki1,Bhunia Anil Kumar1,Chatterjee Subroto1,Bulkley Gregory B.1

Affiliation:

1. From the Departments of Surgery (T.A., G.B.B.) and Pediatrics (A.K.B., S.C.), Lipid Research Unit, The Johns Hopkins University School of Medicine, Baltimore, Md.

Abstract

Abstract —Glycosphingolipids (GSLs) and their metabolites play important roles in a variety of biological processes. We have previously reported that lactosylceramide (LacCer), a ubiquitous GSL, stimulates NADPH oxidase–dependent superoxide generation by aortic smooth muscle cells and their consequent proliferation. We postulated that LacCer may upregulate adhesion molecules on human polymorphonuclear leukocytes (hPMNs), perhaps also via NADPH oxidase–dependent reactive oxygen metabolite (ROM) generation. Incubation of hPMNs with LacCer upregulated CD11b/CD18 (Mac-1) and CD11c/CD18, as determined by fluorescence-automated cell sorting. LacCer also stimulated these hPMNs to generate superoxide via NADPH oxidase, as determined by lucigenin-enhanced chemiluminescence. However, the upregulation of Mac-1 by LacCer did not itself appear to be mediated by ROMs, since neither an antioxidant nor an NADPH oxidase inhibitor substantially inhibited the Mac-1 upregulation. However, this Mac-1 upregulation was significantly inhibited by two disparate phospholipase A 2 (PLA 2 ) inhibitors. Moreover, LacCer induced arachidonic acid metabolism, which was inhibited by the PLA 2 inhibitors, but not by an NADPH oxidase inhibitor. To evaluate the effect of LacCer on hPMN adhesion to endothelium, hPMNs stimulated with LacCer were allowed to adhere to unstimulated human endothelial cell monolayers. LacCer stimulated hPMN adhesion to endothelial cells, which was blocked by anti-CD18 and by the PLA 2 inhibitors. We conclude that LacCer stimulates both Mac-1 upregulation and superoxide generation in hPMNs but that ROMs are not the upstream signal for Mac-1 upregulation. This mechanism may well be relevant to acute endothelial injury in inflammation and other pathological conditions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3