Differential Expression of Gap Junction Proteins in the Canine Sinus Node

Author:

Kwong King F.1,Schuessler Richard B.1,Green Karen G.1,Laing James G.1,Beyer Eric C.1,Boineau John P.1,Saffitz Jeffrey E.1

Affiliation:

1. From the Departments of Pathology, Surgery, and Pediatrics, Washington University School of Medicine, St Louis, Mo.

Abstract

Abstract —Electrical coupling of pacemaker cells at gap junctions appears to play an important role in sinus node function. Although the major cardiac gap junction protein, connexin43 (Cx43), is expressed abundantly in atrial and ventricular muscle, its expression in the sinus node has been a subject of controversy. The objectives of the present study were to determine whether Cx43 is expressed by sinus node myocytes, to characterize the spectrum of connexin expression phenotypes in sinus node pacemaker cells, and to define the spatial distribution of different connexin phenotypes in the intact sinus node. To fulfill these objectives, we performed high-resolution immunohistochemical analysis of disaggregated adult canine sinus node preparations. Using enhanced tissue preservation and antigen retrieval techniques, we also performed immunohistochemical studies on sections of intact canine sinus node tissue. Analysis of disaggregated sinus node preparations revealed three populations of pacemaker cells distinguished on the basis of connexin immunohistochemical phenotype: ≈55% of cells expressed only connexin40 (Cx40); 30% to 35% of cells expressed Cx43, connexin45 (Cx45), and Cx40; and the remaining cells had no detectable connexin expression. In immunostained sections of intact sinus node, Cx43- and Cx45-positive cells were limited in their distribution and were observed in discrete bundles that appeared to abut atrial myocytes. In contrast, Cx40 immunoreactive signal was widely distributed in the sinus node region. These results indicate that subsets of pacemaker cells express distinct connexin phenotypes. Differential expression of connexins could create regions within the sinus node with different conduction properties, thereby contributing to the nonuniform conduction properties seen in this tissue.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3