Molecular Mechanisms of Neutrophil-Endothelial Cell Adhesion Induced by Redox Imbalance

Author:

Kokura Satoshi1,Wolf Robert E.1,Yoshikawa Toshikazu1,Granger D. Neil1,Aw Tak Yee1

Affiliation:

1. From the Department of Molecular and Cellular Physiology (S.K., D.N.G., T.Y.A.), Louisiana State University Medical Center, Shreveport, La; Center of Excellence in Arthritis and Rheumatism (R.E.W.), Louisiana State University Medical Center, Shreveport, La; and First Department of Internal Medicine (T.Y.), Kyoto Prefectural University of Medicine, Kyoto, Japan.

Abstract

Abstract —Previous studies have implicated a role for intracellular thiols in the activation of nuclear factor-κB and transcriptional regulation of endothelial cell adhesion molecules. This study was designed to determine whether changes in endothelial cell glutathione (GSH) or oxidized glutathione (GSSG) can alter neutrophil adhesivity and to define the molecular mechanism that underlies this GSSG/GSH-induced adhesion response. Treatment of human umbilical vein endothelial cell (HUVEC) monolayers for 6 hours with 0.2 mmol/L diamide and 1 mmol/L buthionine sulfoximine (BSO) decreased GSH levels and increased the ratio of GSSG to GSH without cell toxicity. These redox changes are similar to those observed with anoxia/reoxygenation. Diamide plus BSO–induced thiol/disulfide imbalance was associated with a biphasic increase in neutrophil adhesion to HUVECs with peak responses observed at 15 minutes (phase 1) and 240 minutes (phase 2). N -Acetylcysteine treatment attenuated neutrophil adhesion in both phases, which indicated a role for GSH in the adhesion responses. Interestingly, phase 1 adhesion was inversely correlated with GSH levels but not with the GSSG/GSH ratio, whereas phase 2 neutrophil adhesion was positively correlated with GSSG/GSH ratio but not with GSH levels. Intercellular adhesion molecule-1 and P-selectin–specific monoclonal antibodies attenuated the increased neutrophil adhesion during both phases, whereas an anti–E-selectin monoclonal antibody also attenuated the phase 2 response. Pretreatment with actinomycin D and cycloheximide or with competing ds -oligonucleotides that contained nuclear factor-κB or activator protein-1 cognate DNA sequences significantly attenuated the phase 2 response, which implicated a role for de novo protein synthesis. Surface expression of intercellular adhesion molecule-1, P-selectin, and E-selectin on HUVECs correlated with the phase 1 and 2 neutrophil adhesion responses. This study demonstrates that changes in endothelial cell GSSG/GSH cause transcription-independent and transcription-dependent surface expression of different endothelial cell adhesion molecules, which leads to a 2-phase neutrophil–endothelial adhesion response.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3