Affiliation:
1. From the Departments of Internal Medicine (N.L.W., M.V., P.C., A.A.S.) and Biochemistry (X.F., T.L.K., A.A.S.), University of Iowa, Iowa City.
Abstract
Abstract
Epoxyeicosatrienoic acids (EETs) are potent endothelium-derived vasodilators formed from cytochrome P-450 metabolism of arachidonic acid. EETs and their diol products (DHETs) are also avidly taken up by endothelial cells and incorporated into phospholipids that participate in signal transduction. To investigate the possible functional significance of EET and DHET incorporation into cell lipids, we examined the capacity of EETs and DHETs to relax porcine coronary arterial rings and determined responses to bradykinin (which potently activates endothelial phospholipases) before and after incubating the rings with these eicosanoids. 14,15-EET and 11,12-EET (5 μmol/L) produced 75±9% and 52±4% relaxation, respectively, of U46619-contracted rings, whereas 8,9-EET and 5,6-EET did not produce significant relaxation. The corresponding DHET regioisomers produced comparable relaxation responses. Preincubation with 14,15-EET, 11,12-EET, 14,15-DHET, and 11,12-DHET augmented the magnitude and duration of bradykinin-induced relaxation, whereas endothelium-independent relaxations to aprikalim and sodium nitroprusside were not potentiated. Pretreatment with 2 μmol/L triacsin C (an inhibitor of acyl coenzyme A synthases) inhibited [
3
H]14,15-EET incorporation into endothelial phospholipids and blocked 11,12-EET– and 14,15-DHET–induced potentiation of relaxation to bradykinin. Exposure of [
3
H]14,15-EET–labeled endothelial cells to the Ca
2+
ionophore A23187 (2 μmol/L) resulted in a 4-fold increased release of EET and DHET into the medium. We conclude that incorporation of EETs and DHETs into cell lipids results in potentiation of bradykinin-induced relaxation in porcine coronary arteries, providing the first evidence that incorporated EETs and DHETs are capable of modulating vascular function.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献