Flow-Induced Vascular Remodeling in the Rat Carotid Artery Diminishes With Age

Author:

Miyashiro Jody K.1,Poppa Veronica1,Berk Bradford C.1

Affiliation:

1. From the Department of Medicine, Division of Cardiology, University of Washington, Seattle.

Abstract

Abstract Vascular remodeling is regulated by a combination of hemodynamic, environmental, and genetic factors and may be influenced by age. To evaluate age-dependent remodeling in rats, we developed and used a quantitative highly reproducible model of carotid flow alteration. Fourteen juvenile (99±3 g) and 9 adult (199±5 g) male inbred Fischer rats underwent ligation of the left internal and external carotid arteries under anesthesia. Left common carotid blood flow immediately decreased by ≈93%, whereas flow in the contralateral carotid increased by ≈46%. After 4 weeks, the left carotid outer diameter (OD) significantly decreased in both juvenile and adult rats (as measured in vivo and by histological morphometry) compared with sham-operated rats. Changes in shear stress acutely mirrored the changes in blood flow. OD increased and shear stress returned to initial values after chronic exposure to increased flow in juvenile but not adult rats. To develop a simple quantitative index of remodeling that would not require killing the animals, we measured the OD in vivo and compared the ratio of right to left OD (OD ratio [ODR]) between groups. The initial ODR for all groups was ≈1.0. After 4 weeks of altered flow, the ODR was significantly greater in juvenile than in adult rats (1.48±0.05 versus 1.29±0.04, respectively; P =.030), indicating that juvenile rats experienced more extensive remodeling than did the adult rats. We also found that unilateral carotid ligation caused a left versus right difference in endothelial NO synthase protein levels after 4 weeks that was not present in the sham-operated animals. Thus, the model described here shows that flow-induced vascular remodeling is dependent on age and supports the hypothesis that the driving force for remodeling involves shear stress and possibly NO. Because the model is quantitative, it allows dissection of the genetic factors that regulate remodeling in inbred rat strains.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3