Affiliation:
1. From the Institute of Clinical Pharmacology (R.H.B., K.S., H.L., B.S., D.T., S.M.B.-B.), Hannover Medical School, and Fraunhofer Institute of Toxicology and Aerosol Research (T.T., J.B.), Hannover, Germany.
Abstract
Abstract
—Asymmetrical dimethylarginine (ADMA) is an endogenous nitric oxide synthase inhibitor. It is formed by protein arginine
N
-methyltransferases (PRMTs), which utilize
S
-adenosylmethionine as methyl group donor. ADMA plasma concentration is elevated in hypercholesterolemia, leading to endothelial dysfunction and producing proatherogenic changes of endothelial cell function. Four different isoforms of human PRMTs have been identified. Because the release of ADMA from human endothelial cells is increased in the presence of native or oxidized LDL cholesterol, we investigated the potential involvement of PRMT activity and gene expression in this effect. We found that the production of ADMA by human endothelial cells is upregulated in the presence of methionine or homocysteine and inhibited by either of the methyltransferase inhibitors
S
-adenosylhomocysteine, adenosine dialdehyde, or cycloleucine. This effect is specific for ADMA but not symmetrical dimethylarginine. The upregulation of ADMA release by native and oxidized LDL is abolished by
S
-adenosylhomocysteine and by the antioxidant pyrrollidine dithiocarbamate. Furthermore, a methyl-
14
C label is transferred from
S
-adenosylmethionine to ADMA but not symmetrical dimethylarginine, in human endothelial cells. The expression of PRMTs is upregulated in the presence of native or oxidized LDL. Our data suggest that the production of ADMA by human endothelial cells is regulated by
S
-adenosylmethionine–dependent methyltransferases. This activity is upregulated by LDL cholesterol, which may be due in part to the enhanced gene expression of PRMTs. In concentrations reached by stimulation of methyltransferases (5 to 50 μmol/L), ADMA significantly inhibited the formation of
15
N-nitrite from
l
-[
guanidino
-
15
N
2
]arginine. These findings suggest a novel mechanism by which ADMA concentration is elevated in hypercholesterolemia, leading to endothelial dysfunction and atherosclerosis. (Circ Res. 2000;87:99-105.)
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
452 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献