Abstract 153: Novel Machine Learning Proves Stroke Risk is Not Linear

Author:

Orfanoudaki Agni1,Nouh Amre M2,Chesley Emma1,Cadisch Christian1,Stein Barry3,Alberts Mark2,Bertsimas Dimitris1

Affiliation:

1. MIT, Boston, MA

2. Hartford Hosp Univ of CT, Avon, CT

3. Hartford Hosp Univ of CT, Hartford, CT

Abstract

Background: Current stroke risk assessment tools presume the impact of risk factors is linear and cumulative. However, both novel risk factors and their interplay influencing stroke incidence are difficult to reveal using traditional linear models. Objective: To improve upon the Revised-Framingham Stroke Risk Score and design an interactive non-linear Stroke Risk Score (NSRS). Our work aimed at increasing the accuracy of event prediction and uncovering new relationships in an interpretable user-friendly fashion. Methods: A two phase approach was used to develop our stroke risk score predictor. First, clinical examinations of the Framingham offspring cohort were utilized as the training dataset for the predictive model consisting of 14,196 samples where each clinical examination was considered an independent observation. Optimal Classification Trees (OCT) were used to train a model to predict 10-year stroke risk. Second, this model was validated with 17,527 observations from the Boston Medical Center. The NSRS was developed into an online user friendly application in the form of a questionnaire (http://www.mit.edu/~agniorf/files/questionnaire_Cohort2.html). Results: The algorithm suggests a key dichotomy between patients with or without history of cardiovascular disease. While the model agrees with known findings, it also identified 23 unique stroke risk profiles and introduced new non-linear relationships; such as the role of T-wave abnormality on electrocardiography and hematocrit levels in a patient’s risk profile. Our results in both the training and validation populations suggested that the non-linear approach significantly improves upon the existing revised Framingham stroke risk calculator in the c-statistic (training 87.43% (CI 0.85-0.90) vs. 73.74% (CI 0.70-0.76); validation 75.29% (CI 0.74-0.76) vs 65.93% (CI 0.64-0.67), even in multi-ethnicity populations. Conclusions: We constructed a highly predictive, interpretable and user-friendly stroke risk calculator using novel machine-learning uncovering new risk factors, interactions and unique profiles. The clinical implications include prioritization of risk factor modification and personalized care improving targeted intervention for stroke prevention.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3