Microvascular Responses to Ischemia/Reperfusion in Normotensive and Hypertensive Rats

Author:

Kurose Iwao1,Wolf Robert1,Cerwinka Wolfgang1,Granger D. Neil1

Affiliation:

1. From the Departments of Molecular and Cellular Physiology (I.K., W.C., D.N.G.), and Medicine (R.W.), Center of Excellence in Arthritis and Rheumatism, Louisiana State University Medical Center, Shreveport, La.

Abstract

Abstract —The objective of the present study was to determine whether long-term arterial hypertension renders the microvasculature more vulnerable to the deleterious inflammatory responses elicited by ischemia and reperfusion (I/R). Intravital fluorescence microscopy was used to monitor leukocyte adherence and emigration, platelet-leukocyte aggregation, and albumin extravasation in mesenteric postcapillary venules of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) after 10 minutes of ischemia and subsequent reperfusion. Significant and comparable increases in leukocyte adherence/emigration and the formation of platelet aggregates were elicited by I/R in both WKY and SHR. Albumin extravasation was enhanced after I/R in SHR, but not in WKY. Monoclonal antibodies directed against the adhesion glycoproteins CD18, P-selectin, or ICAM-1 showed similar patterns of protection against the I/R-induced inflammatory responses in WKY and SHR. The enhanced albumin extravasation noted in postischemic venules of SHR was prevented by immunoneutralization of either CD18 on leukocytes or ICAM-1 on endothelial cells. These results suggest that, whereas long-term arterial hypertension does not significantly modify the leukocyte and platelet recruitment normally elicited in venules by I/R, it does result in an exaggerated albumin leakage response, which is mediated by an interaction between β 2 (CD18) integrins on leukocytes and ICAM-1 on endothelial cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3