cGMP-Mediated Negative-Feedback Regulation of Endothelial Nitric Oxide Synthase Expression by Nitric Oxide

Author:

Vaziri Nosratola D.1,Wang Xiu Q.1

Affiliation:

1. From the Division of Nephrology, Department of Medicine, University of California, Irvine, Calif 92697.

Abstract

Abstract —Earlier studies have demonstrated that nitric oxide (NO) exerts a fast-acting inhibitory influence on endothelial NO synthase (eNOS) enzymatic activity in isolated vascular tissue preparations. The present study was designed to examine the possible effect of NO on eNOS protein expression in cultured endothelial cells and intact animals. Human coronary endothelial cells were incubated with S -nitroso- N -acetyl-penicillamine (SNAP, an NO donor), oxyhemoglobin (HGB, an NO trapping agent), SNAP plus HGB, or inactive vehicle (control). In other experiments, cells were treated with 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor), 1 H -[1,2,4]oxadiazolo-[4,3–2]quinoxalin-1-one (ODQ, a guanylate cyclase inhibitor), SNAP plus ODQ, 8-bromo-cGMP (8-Br-cGMP, a cell-permeable cGMP compound), 8-Br-cGMP plus HGB, or inactive vehicle in order to discern the effect of cGMP. The incubations were conducted for 24 hours, and total nitrate plus nitrite production and eNOS protein abundance (Western analysis) were measured. To determine the effect of NO on eNOS expression in vivo, rats were treated with either the NO donor isosorbide dinitrate or placebo by gastric gavage for 48 hours, and aortic eNOS protein expression was examined. The NO donor SNAP markedly depressed, whereas the NO scavenger HGB significantly raised, eNOS protein expression. The downregulatory action of SNAP was completely abrogated by HGB. Phosphodiesterase inhibitor and 8-Br-cGMP downregulated, whereas the guanylate cyclase inhibitor ODQ upregulated eNOS protein expression. The downregulatory action of SNAP was completely overcome by the guanylate cyclase inhibitor ODQ, and the upregulatory action of the NO scavenger HGB was abrogated by 8-Br-cGMP. Administration of NO donor resulted in a marked downregulation of aortic eNOS protein expression in intact animals, thus confirming the in vitro findings. NO serves as a negative-feedback regulator of eNOS expression via a cGMP-mediated process.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3