Workshop: Excess Growth and Apoptosis

Author:

Hamet Pavel1,Thorin-Trescases Nathalie1,Moreau Pierre1,Dumas Pierre1,Tea Ben-Sung1,deBlois Denis1,Kren Vladimir1,Pravenec Michal1,Kunes Jaroslav1,Sun Yulin1,Tremblay Johanne1

Affiliation:

1. From Centre de recherche, Centre hospitalier de l’Université de Montréal, Montréal, Québec, Canada (P.H., N.T.-T., P.M., P.D., B.-S.T., D.d.B., Y.S., J.T.); Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic (M.P.); and Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic (V.K., M.P., J.K.).

Abstract

Several groups including ours have demonstrated cardiac hyperplasia in neonates from genetically hypertensive rat strains. We have shown that similar problems exist in the kidney as well. More recently, we found that excessive heart and kidney weight is neonatally related to inhibition of apoptosis. Using recombinant inbred strains derived from a reciprocal cross between Brown Norway and spontaneously hypertensive rat progenitor strains, we mapped the inhibition of neonatal apoptosis to 2 distinct loci on chromosomes 1 (Myl 2) and 18 (Abrb 2). Positional candidate genes at these loci are being explored. These studies have also demonstrated that the loci determining kidney and heart weights in neonates are distinct from those determining increased organ weight in adults. The impact of blood pressure per se is also divergent because adult kidney weight is negatively correlated whereas heart weight is positively correlated with it. Analyses by extremes of low and high percentiles from fetal life to adulthood identified a single locus determining heart weight at Acaa on chromosome 8 in newborn ( P =0.0003) and adult ( P =0.016) rats. The Acaa region contains a DNA mismatch repair gene ( hMLH1 ). The kinetics of neonatal growth through adulthood by prelabeling DNA with [ 3 H]thymidine in pregnant mares showed that although the growth process is complex and nonlinear in the kidney of hypertensive rats, there is an increased turnover of cells, that is, reduced half-life of DNA. This observation is supported by the presence of shorter telomere fragments in kidneys of spontaneously hypertensive rats. These studies suggest that cardiovascular cells from hypertensive animals are subject to accelerated turnover, potentially leading to their accelerated aging.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3