Affiliation:
1. From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC.
Abstract
Abstract
—Tissue kallikrein cleaves kininogen substrate to produce vasoactive kinin peptides that have been implicated in the proliferation of vascular smooth muscle cells (VSMCs). To explore potential roles of the kallikrein-kinin system in vascular biology, we evaluated the effects of adenovirus-mediated human kallikrein gene delivery on the growth of primary cultured VSMCs and in balloon-injured rat artery in vivo. Kallikrein gene transfer into cultured rat VSMCs resulted in time-dependent secretion of recombinant human tissue kallikrein and inhibition of cell proliferation. Balloon angioplasty reduced endogenous rat tissue kallikrein mRNA and protein levels at the injured site. In rats that received adenovirus-mediated human kallikrein gene delivery, we observed a 39% reduction in intima/media ratio at the injured vessel after delivery compared with that of rats that received control virus (n=8,
P
<0.01). Icatibant, a specific bradykinin B
2
receptor antagonist, blocked the protective effect and reversed the intima/media ratio to that of the control rats (n=5,
P
<0.01). After gene delivery, human kallikrein mRNA was identified at the injured vessel and a 3-fold increase occurred in kininogenase activity. cAMP and cGMP levels in balloon-injured aorta increased significantly at 4, 7, and 14 days after kallikrein gene delivery, but icatibant abolished the increase. These results provide new insights into the role of the vascular kallikrein-kinin system and have significant implications for gene therapy to treat restenosis or atherosclerosis.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献