Ascorbic Acid–Induced Modulation of Venous Tone in Humans

Author:

Grossmann Matthias1,Dobrev Dobromir1,Himmel Herbert M.1,Ravens Ursula1,Kirch Wilhelm1

Affiliation:

1. From the Institutes of Clinical Pharmacology (M.G., W.K.) and Pharmacology and Toxicology (D.D., H.M.H., U.R.), Medical Faculty of the University of Technology Dresden (Germany).

Abstract

Ascorbic acid appears to have vasodilatory properties, but the underlying mechanisms are not well understood. The aims of this study were to define the acute effects of locally infused ascorbic acid in human veins and to explore underlying mechanisms by using pharmacological tools in vivo. Ascorbic acid was infused in dorsal hand veins submaximally preconstricted with the α 1 -adrenoceptor agonist phenylephrine or with prostaglandin F in 23 healthy male nonsmokers, and the venodilator response was measured. Ascorbic acid produced dose-dependent dilation with maximum reversal of constriction of 38±4% in phenylephrine-preconstricted veins and of 51±13% in prostaglandin F –preconstricted veins. Oral pretreatment with the cyclooxygenase inhibitor acetylsalicylic acid or local coinfusion of ascorbic acid and the nitric oxide synthase inhibitor N G -monomethyl- l -arginine had no effect, but coinfusion of ascorbic acid and methylene blue (to inhibit cGMP generation) abolished venodilation. Coinfusion of ascorbic acid and the nonselective potassium channel blocker quinidine abolished venodilation, whereas the inhibitor of ATP-dependent potassium channels glibenclamide had no effect. In cultured bovine endothelial cells, ascorbic acid did not affect intracellular calcium concentration but blunted the response to ATP or digitonin exposure. Ascorbic acid, in millimolar concentrations, dilates human hand veins, presumably by activation of vascular smooth muscle potassium channels through cGMP. This activation is independent of eNOS-mediated nitric oxide synthesis and cyclooxygenase products and does not involve ATP-dependent potassium channels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3