Sympathetic Reinnervation Is Required for Mammalian Cardiac Regeneration

Author:

White Ian A.1,Gordon Julie1,Balkan Wayne1,Hare Joshua M.1

Affiliation:

1. From the Interdisciplinary Stem Cell Institute (I.A.W., W.B., J.M.H.) Departments of Medicine (W.B., J.M.H.) and Molecular and Cellular Pharmacology (J.M.H.), University of Miami Miller School of Medicine, FL; and Department of Genetics, University of Georgia, Athens (J.G.).

Abstract

Rationale: Although mammalian cardiac regeneration can occur in the neonatal period, the factors involved in this process remain to be established. Because tissue and limb regeneration require concurrent reinnervation by the peripheral nervous system, we hypothesized that cardiac regeneration also requires reinnervation. Objective: To test the hypothesis that reinnervation is required for innate neonatal cardiac regeneration. Methods and Results: We crossed a Wnt1-Cre transgenic mouse with a double-tandem Tomato reporter strain to identify neural crest-derived cell lineages including the peripheral autonomic nerves in the heart. This approach facilitated the precise visualization of subepicardial autonomic nerves in the ventricles using whole mount epifluorescence microscopy. After resection of the left ventricular apex in 2-day-old neonatal mice, sympathetic nerve structures, which envelop the heart under normal conditions, exhibited robust regrowth into the regenerating myocardium. Chemical sympathectomy inhibited sympathetic regrowth and subsequent cardiac regeneration after apical resection significantly (scar size as cross-sectional percentage of viable left ventricular myocardium, n=9; 0.87%±1.4% versus n=6; 14.05±4.4%; P <0.01). Conclusions: These findings demonstrate that the profound regenerative capacity of the neonatal mammalian heart requires sympathetic innervation. As such, these data offer significant insights into an underlying basis for inadequate adult regeneration after myocardial infarction, a situation where nerve growth is hindered by age-related influences and scar tissue.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3