CCND2 Overexpression Enhances the Regenerative Potency of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes

Author:

Zhu Wuqiang1,Zhao Meng1,Mattapally Saidulu1,Chen Sifeng1,Zhang Jianyi1

Affiliation:

1. From the Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (W.Z., M.Z., S.M., J.Z.); and Department of Physiology and Pathophysiology, Fudan University, Shanghai, China (M.Z., S.C.).

Abstract

Rationale: The effectiveness of transplanted, human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) for treatment of ischemic myocardial injury is limited by the exceptionally low engraftment rate. Objective: To determine whether overexpression of the cell cycle activator CCND2 (cyclin D2) in hiPSC-CMs can increase the graft size and improve myocardial recovery in a mouse model of myocardial infarction by increasing the proliferation of grafted cells. Methods and Results: Human CCND2 was delivered to hiPSCs via lentiviral-mediated gene transfection. In cultured cells, markers for cell cycle activation and proliferation were ≈3- to 7-folds higher in CCND2-overexpressing hiPSC-CMs (hiPSC-CCND2 OE CMs) than in hiPSC-CMs with normal levels of CCND2 (hiPSC-CCND2 WT CMs; P <0.01). The pluripotent genes (Oct 4, Sox2, and Nanog) decrease to minimal levels and undetectable levels at day 1 and 10 after differentiating to CMs. In the mouse myocardial infarction model, cardiac function, infarct size, and the number of engrafted cells were similar at week 1 after treatment with hiPSC-CCND2 OE CMs or hiPSC-CCND2 WT CMs but was about tripled in hiPSC-CCND2 OE CM–treated than in hiPSC-CCND2 WT CM–treated animals at week 4 ( P <0.01). The cardiac function and infarct size were significantly better in both cell treatment groups’ hearts than in control hearts, which was most prominent in hiPSC-CCND2 OE CM–treated animals ( P <0.05, each). No tumor formation was observed in any hearts. Conclusions: CCND2 overexpression activates cell cycle progression in hiPSC-CMs that results in a significant enhanced potency for myocardial repair as evidenced by remuscularization of injured myocardium. This left ventricular muscle regeneration and increased angiogenesis in border zone are accompanied by a significant improvement of left ventricular chamber function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3