Involvement of Bone Marrow Cells and Neuroinflammation in Hypertension

Author:

Santisteban Monica M.1,Ahmari Niousha1,Carvajal Jessica Marulanda1,Zingler Michael B.1,Qi Yanfei1,Kim Seungbum1,Joseph Jessica1,Garcia-Pereira Fernando1,Johnson Richard D.1,Shenoy Vinayak1,Raizada Mohan K.1,Zubcevic Jasenka1

Affiliation:

1. From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville.

Abstract

Rationale: Microglial activation in autonomic brain regions is a hallmark of neuroinflammation in neurogenic hypertension. Despite evidence that an impaired sympathetic nerve activity supplying the bone marrow (BM) increases inflammatory cells and decreases angiogenic cells, little is known about the reciprocal impact of BM-derived inflammatory cells on neuroinflammation in hypertension. Objective: To test the hypothesis that proinflammatory BM cells from hypertensive animals contribute to neuroinflammation and hypertension via a brain–BM interaction. Methods and Results: After BM ablation in spontaneously hypertensive rats, and reconstitution with normotensive Wistar Kyoto rat BM, the resultant chimeric spontaneously hypertensive rats displayed significant reduction in mean arterial pressure associated with attenuation of both central and peripheral inflammation. In contrast, an elevated mean arterial pressure along with increased central and peripheral inflammation was observed in chimeric Wistar-Kyoto rats reconstituted with spontaneously hypertensive rat BM. Oral treatment with minocycline, an inhibitor of microglial activation, attenuated hypertension in both the spontaneously hypertensive rats and the chronic angiotensin II–infused rats. This was accompanied by decreased sympathetic drive and inflammation. Furthermore, in chronic angiotensin II–infused rats, minocycline prevented extravasation of BM-derived cells to the hypothalamic paraventricular nucleus, presumably via a mechanism of decreased C-C chemokine ligand 2 levels in the cerebrospinal fluid. Conclusions: The BM contributes to hypertension by increasing peripheral inflammatory cells and their extravasation into the brain. Minocycline is an effective therapy to modify neurogenic components of hypertension. These observations support the hypothesis that BM-derived cells are involved in neuroinflammation, and targeting them may be an innovative strategy for neurogenic resistant hypertension therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3