Down Syndrome Critical Region 1 Gene, Rcan1 , Helps Maintain a More Fused Mitochondrial Network

Author:

Parra Valentina1,Altamirano Francisco1,Hernández-Fuentes Carolina P.1,Tong Dan1,Kyrychenko Victoriia1,Rotter David1,Pedrozo Zully1,Hill Joseph A.1,Eisner Verónica1,Lavandero Sergio1,Schneider Jay W.1,Rothermel Beverly A.1

Affiliation:

1. From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical...

Abstract

Rationale: The regulator of calcineurin 1 (RCAN1) inhibits CN (calcineurin), a Ca 2+ -activated protein phosphatase important in cardiac remodeling. In humans, RCAN1 is located on chromosome 21 in proximity to the Down syndrome critical region. The hearts and brains of Rcan1 KO mice are more susceptible to damage from ischemia/reperfusion (I/R); however, the underlying cause is not known. Objective: Mitochondria are key mediators of I/R damage. The goal of these studies was to determine the impact of RCAN1 on mitochondrial dynamics and function. Methods and Results: Using both neonatal and isolated adult cardiomyocytes, we show that, when RCAN1 is depleted, the mitochondrial network is more fragmented because of increased CN-dependent activation of the fission protein, DRP1 (dynamin-1-like). Mitochondria in RCAN1-depleted cardiomyocytes have reduced membrane potential, O 2 consumption, and generation of reactive oxygen species, as well as a reduced capacity for mitochondrial Ca 2+ uptake. RCAN1-depleted cardiomyocytes were more sensitive to I/R; however, pharmacological inhibition of CN, DRP1, or CAPN (calpains; Ca 2+ -activated proteases) restored protection, suggesting that in the absence of RCAN1, CAPN-mediated damage after I/R is greater because of a decrease in the capacity of mitochondria to buffer cytoplasmic Ca 2+ . Increasing RCAN1 levels by adenoviral infection was sufficient to enhance fusion and confer protection from I/R. To examine the impact of more modest, and biologically relevant, increases in RCAN1, we compared the mitochondrial network in induced pluripotent stem cells derived from individuals with Down syndrome to that of isogenic, disomic controls. Mitochondria were more fused, and O 2 consumption was greater in the trisomic induced pluripotent stem cells; however, coupling efficiency and metabolic flexibility were compromised compared with disomic induced pluripotent stem cells. Depletion of RCAN1 from trisomic induced pluripotent stem cells was sufficient to normalize mitochondrial dynamics and function. Conclusions: RCAN1 helps maintain a more interconnected mitochondrial network, and maintaining appropriate RCAN1 levels is important to human health and disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3